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A transversal mode with zero group velocity and nonzero phase velocity that can exist in chains of silver
nanospheres in the optical frequency range is theoretically studied. It is shown that the external source radiating
a narrow-band nonmonochromatic signal can excite in the chain a mixture of standing and slowly traveling
waves. The standing-wave component �named the resonator mode� is strongly dominating. The physical reason
for such a regime is a sign-varying distribution of power flux over the cross section of the chain. A possible
application of the resonator mode for evanescent-wave enhancement and for subwavelength imaging in the
visible is discussed.
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I. INTRODUCTION

Recently, new imaging systems capable of resolving sub-
wavelength details were proposed. Realization of the “per-
fect lens” proposed by Pendry �1� requires a realization of a
low-loss artificial material with effective negative permittiv-
ity and permeability. This task is a great challenge, especially
if operation in the visible is a requirement. Although in re-
cent literature there have been reports on progress towards
this goal, other possibilities to realize superresolution imag-
ing devices should be considered. Of particular interest can
be a possibility to use arrays of small resonant particles �2�,
which allows one to enhance evanescent fields and form sub-
wavelength images without any bulk metamaterial. The key
feature of such a particle array is that it can support slow
surface waves with large wave numbers. For “ideal” opera-
tion, waves with all wave numbers that are larger than the
free-space wave number should be in the eigenmode spec-
trum of the array. It is clear that the ideal operation is hardly
realizable, but it is possible to find structures with rather
“flat” regions on their dispersion curves. Specifically, one
would need to have a possibility of resonant excitation of
surface waves with a wide interval of wave numbers at a
certain working frequency.

For optical applications, a natural choice of small reso-
nant particles is the plasmonic nanosphere. Recent results
from the literature indeed indicate a possibility to realize
regimes needed for devices enhancing evanescent modes: In
a recent paper by Weber and Ford �3� an interesting result
was obtained for a chain of silver nanospheres operating at
frequencies near the plasmon resonance of an individual
sphere. Namely, if the spheres are small enough, polarized
transversally with respect to the chain axis, and the chain is
dense �the ratio of the sphere diameter d to the array period
a is larger than 0.5�, there appears a frequency band in which
two propagation constants q1 and q2 correspond to every

frequency �. One propagation constant q1 corresponds to a
forward wave; another q2�q1 corresponds to a backward
wave. At the upper bound of this frequency band �frequency
�r� both these solutions join one another: qb=qf =qr. At this
frequency the group velocity is zero and the phase velocity is
nonzero. In the vicinity of this frequency the dispersion
curve is rather flat, and there is a more or less wide range of
wave numbers that can be resonantly excited by external
evanescent fields.

Let us note that this zero-group-velocity regime is not the
Bragg mode since it occurs not at the edge of the first Bril-
louin zone; see Fig. 1. The crucial difference with the Bragg
mode is that the phase velocity is not equal to � /a, and
therefore the wave with wave number kx=qr and frequency
�r does not experience the total reflection by the chain.
Meanwhile, the Bragg mode of an infinite periodic structure
is not supported by the chain and corresponds to the excita-
tion of some few elements of the chain �closest to the source�
and the mode under study can be excited by a source in a
rather long part of the chain. The length is restricted only by
losses.

In this paper we theoretically study the excitation of
waves in dense chains of plasmonic nanoparticles in view of
potential applications for subwavelength imaging in the op-
tical region.

II. ZERO GROUP VELOCITY IN CHAINS OF PLASMON
PARTICLES

A dispersion curve exhibiting the zero-group-velocity re-
gime was obtained in �3� by numerical simulation of a finite
chain of silver spheres with diameter d=50 nm, period
a=75 nm �in free space�. We reproduced it in �4� using an
analytical solution of the explicit dispersion equation for the
infinite chain of resonant dipoles. Let us briefly present our
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analytical model �note that a similar model was presented in
Ref. �5�, which appeared very recently�. A transversally
�z-�polarized sphere centered at a certain point of the axis
x—e.g., at x=0—is chosen as a reference sphere and the
z-directed dipole moment p is attributed to it. All other
spheres are modeled as z-directed dipoles pn whose phase
shift with respect to the reference one is determined by the
propagation constant q: pn= p exp�−jqna�. Temporal depen-
dence is chosen as exp�j�t�.

Neglecting losses in order to obtain a real-value disper-
sion equation we can write the permittivity of silver in the
optical range in the form

�s = 1 −
�p

2

�2 , �1�

where the plasma frequency �p can correspond to the wave-
length 150–300 nm �6� depending on the sphere radius.
Next, we write the inverse polarizability of the sphere in the
form following from formulas �4� and �6� of �3�:

1

�
=

�s + 2�

3�0�V��s − ��
+ j

k3

6��0�
. �2�

Here V=�d3 /6 is the sphere volume and � is the matrix
permittivity. The difference between Eq. �2� and formula �6�
of �3� is due to the Gaussian system of units adopted in �3�.
The polarizability � relates the dipole moment p of the ref-
erence sphere with local field E�loc� �more exactly, its z com-
ponent� which is produced by all the other dipoles. The local
field can be expressed through p in terms of the interaction
constant C of the dipole array:

E�loc� = C�k,q,a�p, p = �E�loc�. �3�

C depends on the frequency � �or matrix wave number
k=���0�0��, on the propagation constant q, and on the array
period a. The interaction constant of the chain of transver-
sally polarized dipoles in a homogeneous matrix with rela-
tive permittivity � was analytically obtained in �4� for
the domain outside the light cone—i.e., within the band
k�q�2� /a−k. The expression is as follows:

C =
jk3

6���0
−

k2

4a���0
ln�2�cos qa − cos ka��

−
1

2���0
�
n=1

+� � k sin nka

�na�2 +
cos nka

�na�3 	cos nqa . �4�

The logarithmic term describes the wave interaction of di-
poles. For lossless particles the dispersion equation 1/�=C
transits to the real equation

Re
 1

�
� = Re�C� , �5�

since the imaginary parts of the interaction constant and that
of the inverse polarizability cancel out.

The solution of the dispersion equation �5� for the same
parameters as in �3� �a=1.5d=75 nm, 	p=272 nm, �=1�
allows us to reproduce with a high accuracy the numerical
results of �3�. The curve shown in Fig. 1 visually coincides
with the dispersion plot shown in Fig. 3 of �3�. The guided
mode wave number q becomes really different from the
free-space one k only near the plasmon resonance of a sphere
�=�0 �in our case it corresponds to ka=1�. The zero group
velocity corresponds to �r=0.999�0 and qr=0.411� /a �we
call it a resonator mode�. Within the very narrow band of
normalized frequencies 0.998�� /�0�0.999 the rather
large interval of propagation constants lies 0.36��qa
�0.6�.

In �3� it was shown that the eigenmode for a system of 20
z-polarized spheres almost coincides with that for infinite
chain �Fig. 1�. So both backward and forward modes should
exist in a finite chain within the frequency range under con-
sideration. Even the presence of losses in silver �these losses
were also simulated in the cited work� does not practically
disturb the dispersion curve shown in Fig. 1 �the curve for
lossy silver is also shown in Fig. 3 of �3��. The very impor-
tant questions are as follows: How to excite the mode at the
frequency �r and what happens in the chain with the pulse
occupying a narrow but finite range �1 , . . . ,�r?

Notice that an exotic mode with zero group velocity and
nonzero phase velocity is not a new phenomenon. Probably,
the first known structure with this property is a surface wave
on an interface between two media, such that one of the
media has normal dispersion, but the other has anomalous
dispersion. This case was considered in �7� in connection
with waves having complex amplitudes. At a special fre-
quency the surface wave stops propagating and the total
power flux equals zero, though in two media separately the
Poynting vectors are nonzero. Another publication revealing
a similar regime was �8�. In that work the authors studied

FIG. 1. �Color online� Dispersion diagram of the chain
d=50 nm, a=75 nm, and 	p=272 nm, corresponding to Fig. 3 of
Ref. �3�.
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hybrid waves in a microwave parallel-plate waveguide con-
taining a ferrite layer with tangential magnetization which
was located between two dielectric layers �for example, two
air spacings�. At the special frequency corresponding to zero
group velocity of the eigenmode the wave was forward in the
two dielectric layers and backward in the ferrite layer, so that
the averaged total power flux was zero. A similar situation
happens in coupled waveguides—e.g., in coupled periodi-
cally loaded rectangular waveguides �also considered in �7��
and in waveguides formed by channels in photonic crystals
�e.g., �11��. One can obtain the so-called odd excitation of
these guides when the forward wave propagating in the first
channel excites the backward wave with the same amplitude
in the second one. For the waveguides in photonic crystal
this can happen for real-value wave numbers of guided
modes �11�. A new pulse to study such systems is related to
composite materials exhibiting both negative permittivity
and negative permeability in the same frequency range. This
property corresponds to the negative refraction index of a
medium. Waves with zero group velocity and nonzero phase
one in the negative refraction-index waveguides were studied
in Refs. �9,10�. The vortex character of the Poynting vector
distribution was shown in these works as well as the absence
of the fundamental mode in this regime. The effect of the
zero group velocity with a nonzero phase one was also ob-
tained �though not discussed� in papers devoted to microstrip
lines with negative refraction and to electromagnetic band-
gap surfaces �artificial periodic structures with resonant sur-
face impedance� �12,13�. The present paper develops the
topic concerning such an exotic mode for chains of nanopar-
ticles, emphasizing the problems of their excitation and
propagation of a light pulse in such chains. The spatial dis-
tribution of the Poynting vector of the mode is also studied.

III. EXCITATION OF THE CHAIN BY A LINE
SOURCE

Let a z-polarized line source stretched along OY with di-
pole moment per unit length �p.u.l.� Ps be located at the
point x=x0, z=0 where x0→−�. This geometry of the exci-
tation allows us to ignore the interaction of the reference
sphere centered at the point x=0 with the particles positioned
near the source.

Let f�k ,x ,z� denote any component of the field produced
by the source radiating at the frequency �=k /��0�0�. We

expand f�k ,x ,z� into a spatial spectrum defined as

f�k,kx,z� � 
−�

�

f�k,x,z�ejkxxdx . �6�

The external field exciting the chain of spheres contains har-
monics with kx�k and kx�−k, which are evanescent with
respect to z and propagating along x within the interval
−��x�� in both positive and negative directions and the
spatial spectrum, is symmetric—i.e., f�kx�= f�−kx�.

The Fourier transform allows us to single out the resonant
contribution of harmonics kx=q �where q is a solution of the
dispersion equation� into induced polarization of the chain.
This resonant contribution is due to the phase synchronism
of a spatial harmonic of the external field with kx=q and an
eigenmode of the chain. The eigenmodes are excited by eva-
nescent waves �with respect to the z axis� having �kx��k. If
the source oscillates at the frequency �1��r so that
�1��r �as shown in Fig. 2�, two waves will be excited in an
infinite lossless chain within the interval x�x0: a forward
wave with wave vector kx=qf and a backward wave with
wave vector kx=−qb. This happens because the source is po-
sitioned on the left from the considered spatial domain, so
that the group velocity of both excited eigenwaves should be
directed to the right, away from the source. This means that
for the backward wave we should choose the negative dis-
persion branch with kx=−qb; see Fig. 2.

We will use the Floquet expansion for the chain polariza-
tion. For the polarization per unit length of the chain we can
write

P�x� = P f + Pb = aAf �
m=−�

�


�x − ma�e−jqfx

+ aAb �
m=−�

�


�x − ma�ejqbx. �7�

In this equation Af and Ab are unknown values related to the
spatial spectrum of the external field f�kx�. Using the Poisson
summation formula we obtain the Floquet expansion for po-
larization p.u.l.:

FIG. 2. �Color online� Two
waves, a forward one and back-
ward one, both with positive
group velocity �Vg�0�, are ex-
cited in the right part of the chain
�with respect to the source� at the
frequency �1��r. At the fre-
quency �r both qf and qb transit to
qr and Vg→0.
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P f�x� + Pb�x� = Af �
m=−�

�

e−j�qf+2�m/a�x + Ab �
m=−�

�

ej�qb−2�m/a�x.

�8�

Let us find Af and Ab. The crucial factor of the theory is the
relation between Af and Ab that determines the contribution
of the standing wave in the excited field. In this section we
will obtain the result Af �Ab, and below we will show that
the standing wave is dominating.

The vector potential of the external field within the inter-
val −��x�� is equal to

As�x,z� =
��0Ps

4
H0

�2��k��x − x0�2 + z2�z0 �9�

�where H0
�2� denotes Hankel’s function of the second kind�

and its Fourier transform is as follows:

As�kx,z� =
− j��0Ps

2�k2 − kx
2

e−jkxx0e−j�k2−kx
2�z�z0. �10�

Using the Lorentz gauge we easily obtain the Fourier trans-
form of the z component of Es at the plane z=0:

Ezs�kx,0� =
kx

2Pse
jkxx0

2��0
�k2 − kx

2
=

kx
2Pse

−jkx�x0�

2��0
�k2 − kx

2
. �11�

Every spatial harmonic Ezs�kx ,0�exp�−jkxx� induces a
periodic distribution of dipole moments along the chain
pn�kx�= p�kx�exp�−jkxna�, and from Eq. �3� we obtain the
following equation for the reference dipole moment excited
by this spatial harmonic:

1

�
p�kx� = Ez�kx,0� + C�kx�p�kx� . �12�

Here the first term on the right-hand side is the spatial har-
monic of the external field taken at x=0 and the second term
is the corresponding interaction field of the chain. With Eqs.
�11� and �12� the reference dipole moment excited at the
given frequency reads as

p = 
−�

� kx
2Ps

4���0
�k2 − kx

2

e−jkx�x0�

Re
 1

�
� − Re�C�kx��

dkx. �13�

Following the principle illustrated by Fig. 2 we can at-
tribute to the roots of the dispersion equation kx=qf and
kx=−qb infinitesimally small negative imaginary parts. In-
deed, these waves transport energy from the source and
therefore must attenuate along x. Then in the lower half-
plane of the complex variable kx the integrand in Eq. �13� has
two poles kx=qf and kx=−qb. The contribution of these poles
is residual:

p = �Ps
 qf
2e−jqf �x0�

�qf
2 − k2��qf�

+
qb

2ejqb�x0�

�qb
2 − k2��− qb�

� , �14�

where we have denoted

��q� = 4���0
d

dq
�Re
 1

�
� − Re�C�q��	

= − 4���0
d Re�C�q��

dq
.

In Eq. �14� we have neglected the contribution of the branch
cut around kx=k �which describes the cylindrical wave field
attenuating from the source�. The results for Af and Ab follow
from Eq. �14� and definition �7�:

Af ,b = ± �Pse
jqf ,b�x0�

qf ,b
2

��qf ,ba�2 − �ka�2���qf ,b��
. �15�

In Eq. �15� the minus sign for q=qb takes into account that
��q� is an odd function of q. From Eq. �15� the following
relations can be derived:

Af = A0�qf�e−jqf �x0�, Ab = − A0�qb�ejqb�x0�. �16�

Here

A0�q� = q2Ps���qa�2 − �ka�2���q�� �17�

is a slowly varying function.
Let us show that the relation A0�qf�=A0�qb� holds with a

high accuracy for ���r. From Eq. �4� we easily obtain

��q� =
1

a2� �ka�2 sin qa

�cos ka − cos qa�
+ 2�

n=1

+�
cos nka sin nqa

�n�2

+ 2ka
sin nka sin nqa

n 	 .

Using the tabulated series

�
m=1

+�
e−j�m

m
= − ln�1 − e−j�� = − 
ln�2 sin

���
2
� + j

� − ��

2
� ,

�18�

where ��=2��� / �2��� and the notation �x� is used for frac-
tional part of variable x, we obtain, for ��q�,

��q� =
1

a2� �ka�2 sin qa

�cos ka − cos qa�
+ 2�

n=1

+�
cos nka sin nqa

�n�2

+ ka ln� sin
qa + ka

2
�

sin
qa − ka

2
��� . �19�

Formula �19� should be substituted into Eq. �17�. At the fre-
quency �=0.998�0 from the dispersion curve shown in Fig.
1 we have qfa=0.401�=0.957qra and qba=0.440�
=1.050qra. Substituting these values into Eqs. �15� and �19�
we obtain Ab /Af �−0.945 exp�j2.007qr�x0��. Thus, when
���r the relation �Ab���Af� indeed holds.

Relation �16� for ���r can be approximately rewritten
as
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Ab

Af
� − ej�qb+qr��x0�. �20�

Let us show that the ratio �20� practically does not depend on
the frequency in the vicinity of the point �r. At �r the func-
tion q��� has zero derivative, and since the dispersion curve
is smooth, we can approximate it as

q��� = qr + ���r − ��2. �21�

Here � is a finite coefficient. Then qb=qr+�q��� and
qf =qr−�q���, where we denoted �q���=���r−��2. So we
can rewrite Eq. �20� as

Ab

Af
� − e2jqr�x0�. �22�

Thus, the two propagating modes −qb and qf are excited with
practically the same efficiency when ���r. Note that the
phase shift between Af and Ab is not the real phase shift
between the forward and backward waves excited in the
chain. Recall that Af ,b are components of the dipole moment
of the reference sphere which is distanced by �x0� from the
source. It is physically sound that the ratio Ab /Af depends
on x0.

IV. POYNTING VECTOR EVALUATION

In this section we study the spatial distribution of the axial
component of the Poynting vector in the excited chain. The
purpose is to understand the energetic mechanism of the
standing wave excitation in the infinite chain.

The field produced by every term �Floquet’s harmonic� of
Eq. �8� is known: This is the field of a continuous transversal
polarization with harmonic dependence along the axis. Let us
denote �=�y2+z2 and let kxm denote either kxm=qf +2�m /a
or kxm=−qb+2�m /a. In polar coordinates �� ,z ,�� all the
components of the field produced by every Floquet’s har-
monic of P�x� can be written using formulas �5.32� of �15�:

E�m =
A

j4�0
cos ���k2 − kxm

2 �
H1

�2���k2 − kxm
2 ��

�k2 − kxm
2 �

+ kxm
2 H0

�2���k2 − kxm
2 ��	e−jkxmx, �23�

E�m =
A

j4�0
sin ���k2 − kxm

2 �
H1

�2���k2 − kxm
2 ��

�k2 − kxm
2 �

− k2H0
�2���k2 − kxm

2 ��	e−jkxmx, �24�

Exm =
A

4�0a
cos �kxm

�k2 − kxm
2 H1

�2���k2 − kxm
2 ��e−jkxmx,

�25�

H�m = −
j�A

4
kxm sin �H0

�2���k2 − kxm
2 ��e−jkxmx, �26�

H�m = −
j�A

4
kxm cos �H0

�2���k2 − kxm
2 ��e−jkxmx, �27�

Hxm =
�A

4a
sin ��k2 − kxm

2 H1
�2���k2 − kxm

2 ��e−jkxmx. �28�

Here A=Ab for the fields of the backward wave and A=Af
for the fields of the forward wave. The total field produced
by the chain is the sum

Et = E f + Eb, Ht = H f + Hb, �29�

where the index t denotes the total field and the field of the
source is neglected ��x0�→��. In this way both forward-wave
and backward-wave components of the field produced by the
chain are represented as Floquet’s series of terms �23�–�28�
�all the coefficients in these expansions equal unity in accor-
dance with Eq. �8��.

The Poynting vector is proportional to the vector product
of the total electric and magnetic fields. The axial component
of the Poynting vector responsible for the energy transport is
as follows:

Sx
t =

1

2
Re��E�

t H�
t* − E�

t H�
t*�� . �30�

Representing the total field as the sum of harmonics
�23�–�28� we obtain that the Poynting vector splits into four
terms,

Sx
t = Sf f + Sbb + Sfb + Sbf , �31�

where for every term of Eq. �31� the following expansion is
obtained:

S�� = �
m=−�

�

�
n=−�

�

Smn
��

= �
m=−�

�

�
n=−�

�
1

2
Re��E�mH�n

* − E�mH�n
* �� . �32�

In this equation E�m, H�n, H�n, and E�n are determined by
relations �23�–�28� and

kxm = qf +
2�m

a
, kxn = qf +

2�n

a
for Sf f , �33�

kxm = − qb +
2�m

a
, kxn = − qb +

2�n

a
for Sbb, �34�

kxm = qf +
2�m

a
, kxn = − qb +

2�n

a
for Sfb, �35�

kxm = − qb +
2�m

a
, kxn = qf +

2�n

a
for Sbf . �36�

Every term Smn
�� of the series �32� �� and � mean f or b�

reads
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Smn
����,�,x� =

1

2
Re��A1A2

*kxn

16�0
�cos2 �
�k2 − kxm

2 �

�
H1

�2���k2 − kxm
2 ��

�k2 − kxm
2 �

+ kxm
2 H0

�2���k2 − kxm
2 ���

�H0
�2�*��k2 − kxn

2 �� − sin2 �
�k2 − kxm
2 �

�
H1

�2���k2 − kxm
2 ��

�k2 − kxm
2 �

− k2H0
�2���k2 − kxm

2 ���
�H0

�2�*��k2 − kxn
2 ��	e−j�kxm−kxn�x� . �37�

Here A1=A2=Af for Smn
f f , A1=A2=Ab for Smn

bb , and A1=Af,
A2=Ab for Smn

fb,bf.
Relation �37� describes the axial Poynting vector as the

function of all three polar coordinates. To check ourselves
we have considered the radial component of the Poynting
vector and proved the power balance in the leaky regime. We
have shown that in both waveguide and leaky regimes the
Poynting vector distribution is vortex since ��S�0 on the
axis x �this result was also obtained in �8� for a layered
waveguide with the opposite energy flow directions in the
layers�.

Here we concentrate on the averaged power flux along the
chain. This flux corresponds to averaging of Sx

t over both
azimuthal angle � and coordinate x. The integration with
respect to angle � gives � in each term of Eq. �37�, and the
terms with H1

�2���k2−kxm
2 �� cancel out. Further, averaging

over x leaves only the terms with m=n due to the factor
cos�kxm−kxn�x. Moreover, after averaging over x the terms
Sbf and Sfb cancel out, because due to the difference between
qb and qr, the diagonal terms Smm

bf ,fb are proportional to
cos�qb−qf�x.

Because q�k, the argument of Hankel’s functions in Eq.
�37� is imaginary. Since H0

�2��−jz�= �j2/��K0�z�, where K0�z�
is the real-valued McDonald’s function, the averaged over x
and � axial component of the Poynting vector reads

�Sx
t ���� = �

m=−�

�

��Smm
f f � + �Smm

bb �� , �38�

�Smm
f f ,bb� =

��Af ,b�2

8��0a2 kxm�kxm
2 + k2�K0

2��kxm
2 − k2�� . �39�

Here for �Smm
f f � we should substitute kxm=qf +2�m /a and for

�Smm
bb � we should substitute kxm=−qb+2�m /a. The series

�38� converges exponentially except a singular point �=0,
but the singularity is integrable. The basic harmonic for �
�0 is dominating; the contribution of others in the series
sum is marginal. Denoting

Bf ,b = �Af ,b�2
�

8��0a2 �40�

and neglecting the contribution of high-order Floquet har-
monics we have

�Sx
t ���� = Bfqf�qf

2 + k2�K0
2��qf

2 − k2��

− Bbqb�qb
2 + k2�K0

2��qb
2 − k2�� . �41�

The power density attenuates exponentially in the radial di-
rection when �→�. When � is close to �r then �Ab���Af� as
we have shown above and Bb�Bf. So when ���r we can
rewrite Eq. �41�, denoting Bf �Bb=B in the form

�Sx
t ���� � B�qf�qf

2 + k2�K0
2��qf

2 − k2��

− qb�qb
2 + k2�K0

2��qb
2 − k2��� . �42�

In Fig. 3 we present the radial distribution of the axial Poyn-
ting vector in the vicinity of the chain axis. The coefficient in
front of K0 function is greater for the backward wave than
that for the forward wave, but the backward wave attenuates
faster. Therefore at a certain distance �0 �which is determined
by the chain period a but is much smaller than a� the axial
Poynting vector changes sign. In a very narrow “tube”
around the chain axis the energy propagates backward. Out-
side this tube it propagates forward. Practically, all the power
is concentrated within a tube whose radius is close to
4�0 , . . . ,5�0 and is of the order a. The forward energy flux
����0� weakly dominates:

Px = 
0

�

�Sx
t ��d� � 0. �43�

However, the total power flux is much smaller than that of
mode qf or that of mode qb taken separately �the first and
second terms in Eq. �41��. We can accurately show integrat-
ing every spatial harmonic of �Sx

t � in Eq. �43� that Px is
proportional to the small factor ��−�r� /�r. For the zeroth-

FIG. 3. �Color online� Power density distribution �in arbitrary
units� in the vicinity of the chain axis when the two-mode regime is
excited in the chain corresponding to Fig. 1 at three different fre-
quencies close to �r. The domain ��a where all the curves expo-
nentially tend to zero is not shown.
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order one, substituting Eq. �42� into Eq. �43� we obtain

Px = B�qf�qf
2 + k2�

0

�

K0��qf
2 − k2���d�

− qb�qb
2 + k2�

0

�

K0
2��qb

2 − k2���d�	
= B�qf�qf

2 + k2�
qf

2 − k2 −
qb�qb

2 + k2�
qb

2 − k2 	 . �44�

Using Eq. �44� it is easy to show that, when qb−qf � �qb

+qf� /2,

Px � B
�qb − qf��qa

2 + k2�2

�qa
2 − k2�2 , qa �

qb + qf

2
,

and consequently Px is practically proportional to
��−�r� /�rPr, where Pr is the power flux corresponding to
the excitation of the harmonic qr. The value �0 is a parameter
of the chain that almost does not depend on the frequency.
The distribution of the averaged Poynting vector around the
chain axis is shown in Fig. 3 for three different frequencies.
When �→�r the axial Poynting vector tends to zero every-
where. From Eq. �44� it is clear that the power flux vanishes
at �=�r �qb=qf =qr�.

V. NARROW-BAND PULSE IN THE CHAIN

In this section we consider the electric field at the axis of
the chain and prove that this field is the sum of the standing
wave and the traveling wave, where the standing-wave com-
ponent �resonator mode� strongly dominates.

Neglecting the higher Floquet harmonics we have, for the
� and � components of the modal field �see Eqs. �23� and
�24��,

E� =
A

j4��0
cos ���k2 − q2�

H1
�2���k2 − q2��
�k2 − q2�

+ q2H0
�2���k2 − q2��	e−jqx,

E� =
A

j4��0
sin ���k2 − q2�

H1
�2���k2 − q2��
�k2 − q2�

− k2H0
�2���k2 − q2��	e−jqx,

where A=Af, q=qf or A=Ab, q=−qb. Let us define the aver-
aged z component of the electric field as follows:

�Ez� =
1

2�2R0
2

0

2�

d�
0

R0

�d�Ez
t . �45�

Here R0 is the radius of the effective cross section of the
guided modes �the value of the order a�. Then using the
relation Ez=E� cos �−E� sin � we obtain, from Eq. �45�,

�Ez� =
Ae−jqx�k2 + q2�

4�0��R0
2 

0

R0

�d�K0��q2 − k2�� .

In this relation the contribution of H1
�2���k2−q2�� cancels out.

Since McDonald’s functions are rapidly vanishing versus �,
we can write


0

R0

�d�K0��q2 − k2�� � 
0

�

�d�K0��q2 − k2�� =
1

q2 − k2

and finally obtain

�Ez� = Fe−jqx, F =
A�k2 + q2�

4�0�R0
2�q2 − k2�

. �46�

In the second relation �46�, A is the amplitude of the mode—
i.e., A=Af or A=Ab.

At a given frequency ���r both forward and backward
waves are excited and we have, for the total field,

�Ez
t��,x�� = Ffe

−jqf���x + Fbejqb���x. �47�

Here �see Eqs. �16�, �22�, and �46��

Ff � e−jqf �x0� A0�qr��k2 + qr
2�

4��0�R0
2�qr

2 − k2�
,

Fb � − ejqb�x0� A0�qr��k2 + qr
2�

4��0�R0
2�qr

2 − k2�

and we can write

Ff � e−jqf �x0�F0, Fb � − ejqb�x0�F0, �48�

where

F0 =
A0�k,qr��k2 + qr

2�
4�0�R0

2�qr
2 − k2�

. �49�

When �=�r, then qf =qb=qr and we obtain from Eqs. �47�
and �48� a purely standing wave:

�Ez
t��r,x�� = − 2jF0��r,qr�sin qr�x − x0� .

The amplitude of the wave does not depend on the source
location, as it must. In practical cases the source can radiate
a signal with a very narrow but a finite frequency band. Let
us denote the bandwidth as ��=�r−�2, where �2 is the
lower bound of the band, and show that the field �Ez

t�t ,x�� is
a mixture of standing and traveling waves.

The temporal dependence of the source polarization Ps�t�
determines F0�� ,qr�, as follows from Eqs. �17� and �49�. We
denote the inverse Fourier transform of the function
F0�� ,qr� as

F0�t� = 
�2

�r

F0��,qr�ej�td� . �50�

Now we can evaluate �Ez
t�t ,x�� using Eq. �47�:
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�Ez�t,x�� = 
�2

�r

ej�tF0��,qr��e−jqf����x−x0� − ejqb����x−x0��d� .

�51�

Since qb���=qr+�q��� and qf���=qr−�q���, relation �51�
can be rewritten as

�Ez�t,x�� = − 2j sin qr�x − x0�


�2

�r

ej�t−j�q����x−x0�F0��,qr�d� . �52�

Since �q���=���−�r�2, expanding the exponential
exp�−j�q����x−x0�� into a Taylor series, we obtain

�Ez�t,x�� = − 2j sin qr�x − x0��
n=0

�
�− j��x − x0��n

n!


�2

�r

�� − �r�2nF0��,qr�ej�td� . �53�

Using the relations

�� − �r�2n = �
m=0

2n

Am
�2n��m

and


�2

�r

�mF0��,qr�ej�td� =
dmF0�t�

dtm ,

we can rewrite Eq. �53� as a series

�Ez�t,x�� = − 2j sin qr�x − x0��
n=0

�

�
m=0

2n

Am
�2n� �− j��x − x0��n

n!

dmF0�t�
dtm . �54�

Since the radiated pulse is a very narrow band, we have

� dmPs�t�
dtm � � �r

m�Ps�t��

and consequently �see Eqs. �17� and �49��

�dmF0�t�
dtm � � �r

m�F0�t�� .

Neglecting in Eq. �54� all the terms with temporal deriva-
tives of F0�t� and taking into account that A0

�2n�=�r
2n, we

come to an expression for a standing wave:

�Ez�t,x�� � − 2j sin qr�x − x0�F0�t�e−j��r
2�x−x0�. �55�

The traveling-wave component is related to the inaccuracy of
Eq. �55�—i.e., the series of the neglected terms containing
dmF0�t� /dtm with m�0. It is possible to evaluate it numeri-
cally for an explicit temporal dependence Ps�t� using Eqs.
�17�, �49�, and �52�; however, such estimations are not the

purpose of the present paper. We only claim the presence of
the standing wave in the infinite chain excited by a finite
source. The smallness of the traveling-wave component fol-
lows from the results of the preceding section.

It is clear that the function F0�t� given by Eqs. �17�, �49�,
and �50� represents the temporal dependence of the pulse
distorted by the dispersion in the chain. The pulse field splits
into two additive parts: a standing-wave part �resonator
mode� and a traveling-wave part. The traveling-wave part
has a smaller amplitude than the standing wave, and this
result corresponds to the small energy flux obtained above.
One can represent this small positive power flux as a sum of
two parts. One part �negative� is equal to the integral over the
domain ���0 in Eq. �43�. The other part, positive, is equal
to the integral over the domain ���0.

The effective group velocity of the pulse with frequency
range �� is approximately equal to �� divided by the inter-
val of the wave numbers of the pulse �see also Fig. 2�:

Vg �
��

qf − �− qb�
�

��

2qr
;

i.e., Vg is also very small. It means that the chain of silver
spheres in this regime �a narrow-band pulse comprising the
frequency �r� is very efficient as a slow-wave line. It is easy
to estimate that the wave whose wavelength is centered at
490 nm �it corresponds to �r in Fig. 1� and the spectral line
width is 0.1 nm should possess the extremely small group
velocity Vg�0.7�10−4c.

Finally, let us consider a possibility to excite the mode qr
using phase synchronism—e.g., by a parallel optical wave-
guide having wave number qr at frequency �r. In this case
the Poynting vector of the chain eigenmode should be non-
zero and energy should propagate along the chain. However,
such an excitation is possible at the only frequency �at which
the dispersion curve of the exciting waveguide crosses that
of the chain�. Other frequency harmonics of the pulse propa-
gating in the exciting waveguide have phase velocities that
are different from the phase velocities of the chain harmon-
ics. These frequencies are not supported by the chain. How-
ever, for a monochromatic wave �=�r there is no group
velocity at all and nonzero energy flux is not forbidden.
Naturally, excitation of a pulse with zero-frequency band is
impossible, and the resonator-mode regime which is possible
to obtain with a finite source can hardly be obtained with a
phase synchronism due to the strong dispersion in the chain.

VI. POSSIBLE APPLICATION OF THE RESONATOR
MODE

An evident application of the linear array supporting such
a wave is a slow-wave line which should be very efficient.
However, in the present paper we discuss another possible
application of the chain of transversally polarized
silver spheres. We mean its application for subwavelength
imaging of a source, as discussed in the Introduction. Let us
consider a structure formed by two such arrays �as shown in
Fig. 4, on top�. Assume, for example, that their parameters
correspond to the dispersion plot shown in Fig. 1 and the
source radiates a signal occupying the frequency range
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0.998�� /�0�0.999. Consider the evanescent waves �with
respect to the z axis� produced by the source. These
waves are spatial harmonics with transverse wave numbers
�kx��0.999�0 /c. These spatial harmonics will be supported
by both chains within the range of 0.36� /a� �kx��0.6� /a.
In �2� the structure of two planar grids located in parallel
planes X1 and X2 and supporting a surface wave with the
wave vector q was considered. It was shown that if this
surface wave in grid X1 is excited by an evanescent wave
attenuating along z �see Fig. 4�, then in grid X2 this wave will
have an amplitude much higher than that in grid X1. The
corresponding evanescent wave will grow exponentially be-
tween X1 and X2. In Ref. �14� it was shown that in order to
obtain this regime for the whole evanescent spatial spectrum
of the source the grids X1 and X2 should be phase-
conjugating surfaces. However, amplification of evanescent
waves in a more or less narrow interval of spatial frequencies
can be realized by linear systems. This fact was experimen-
tally confirmed in �2�. A grid of antiparallel currents �in the
microwave range� produced an evanescent wave with the
wave vector q supported by a self-resonant sheet �formed by
a planar array of meandered wire particles�. This wave was
strongly amplified across a pair of such sheets. Following the
speculations of �2,14�, the part of evanescent spatial spec-
trum supported at a given frequency by two identical chains

will grow exponentially along z from chain 1 to chain 2 �see
Fig. 4�. Notice that such a structure operates with respect to
the above-mentioned part of the evanescent spatial spectrum
in the same way as Pendry’s perfect lens �1� or a pair of
perfect phase-conjugating surfaces �14� would operate with
respect to the infinite evanescent spectrum.

At every frequency component � of the signal radiated by
a nonmonochromatic source the structure shown in Fig. 4, on
top, will reproduce the amplitudes of these harmonics at a
certain point �image� behind the axis X2. Therefore a sub-
wavelength image of the source located in front of chain X1
will be obtained behind chain X2. However, the variant of the
dispersion curve plotted in Fig. 1 is not optimal for this pur-
pose, and chains supporting waves with a wider range of
wave numbers in the vicinity of the zero group velocity point
can be designed. For such chains, a very-narrow-band signal
will excite chain oscillations with a wider range of wave
numbers, increasing the image resolution. The dispersion
plot shown in Fig. 4 �bottom� demonstrates this possibility.
Here, a more sparse chain �d=30 nm and a=75 nm� was
chosen. The interval of wave numbers from 1.2/a to 1.6/a
corresponds to the relative frequency band 10−4.

The resolution can be further improved if more than one
pair of chains is used and the images obtained with every
pair of chains are unified. The signal of the same frequency
in a chain with d=25 nm and a=80 nm resonantly excites
waves with the wave numbers from q1=1.6/a to q2=2.1/a.
Likewise, a chain with d=20 nm and a=85 nm restores spa-
tial harmonics from q1=2.0/a to q2=2.9/a, practically at the
same frequency. In this way one can form a near-field image
produced by evanescent waves within the interval
q=1.2/a , . . . ,2.9/a using three superlenses, where every su-
perlens contains two parallel chains of silver spheres with
slightly different periods and different diameters. Finally, the
wave-field image of the source can be obtained separately,
and the source image including the contribution of evanes-
cent waves can be restored numerically using the data ob-
tained in these experiments.

VII. CONCLUSION

In this paper we have theoretically demonstrated a possi-
bility to excite a standing wave in an infinite chain of plas-
mon particles �silver nanospheres� in the optical range. This
standing wave �resonator mode� can be excited by a source
positioned on the chain axis or near it and exists together
with a traveling wave which has a much smaller amplitude.

We have studied the power flux spatial distribution at fre-
quencies near the zero group velocity point �r. A time-
harmonic source excites a dual-mode regime which has been
analyzed in detail. At the frequency �r backward and for-
ward waves �wave numbers qr and −qr� are excited with
exactly the same amplitudes, and there is a standing wave in
the chain. At frequencies ���r the wave package is slowly
traveling �a backward wave� and the power flux along the
chain is nonzero �positive�. If the source radiates a narrow-
band pulse or a quasimonochromatic wave whose spectrum
comprises the frequency �r, then the pulse with these fre-
quencies excited in the chain represents a mixture of stand-

FIG. 4. �Color online� Top: a structure for near-field imaging
across the chains. Bottom: the dispersion curve of a chain with
a=75 nm, d=30 nm. There is a wide interval of q where the dis-
persion curve is practically flat �this interval is shown by the
rectangle�.
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ing and traveling waves. The traveling-wave component is
responsible for a nonzero but very small effective group ve-
locity �this means effective excitation of a very slow wave�
and to a very small power flux. The axial Poynting vector is
negative on the chain axis and changes its sign at a certain
distance �0 from it, so that the total energy flux of the pulse
turns out to be positive. The most part of the pulse energy
propagating along the chain in the positive direction returns
back inside a narrow spatial channel centered at the chain
axis. This mechanism is responsible for a standing wave ap-
pearing in an infinite unbounded chain. Besides very efficient

slow-wave lines these chains can be also used for obtaining
subwavelength images.

ACKNOWLEDGMENTS

This work has been coordinated and partially funded by
the “Metamorphose” Network of Excellence. Financial sup-
port of the Academy of Finland and TEKES through the
Center-of-Excellence program is acknowledged. The authors
would like to thank Dr. S.I. Maslovski and Professor I.S.
Nefedov for useful discussions.

�1� J. B. Pendry, Phys. Rev. Lett. 85, 3966 �2000�.
�2� S. Maslovski, S. Tretyakov, and P. Alitalo, J. Appl. Phys. 96,

1293 �2004�.
�3� W. H. Weber and G. M. Ford, Phys. Rev. B 70, 125429

�2004�.
�4� S. A. Tretyakov, A. Viitanen, and C. R. Simovski, in Proceed-

ings of the OSA International Topical Meeting: Nanophotonics
for Information Systems, San Diego, CA, USA, 2005 �unpub-
lished�, p. 484.

�5� R. A. Shore and A. Yaghjian, Electron. Lett. 41, 578 �2005�.
�6� U. Kreibig, Z. Phys. 234, 307 �1970�.
�7� A. M. Belyantsev and A. V. Gaponov, Radio Eng. Electron.

Phys. 8, 980 �1964�.
�8� V. N. Ivanov, N. P. Demchenko, I. S. Nefedov, R. A. Silin, and

A. G. Schuchinsky, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 32,

764 �1989�.
�9� I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys.

Rev. E 67, 057602 �2003�.
�10� A. C. Peacock and N. G. R. Broderick, Opt. Express 11, 2502

�2003�.
�11� D. Mori and T. Baba, Appl. Phys. Lett. 85, 1101 �2004�.
�12� A. Sanada, C. Caloz, and T. Itoh, IEEE Trans. Microwave

Theory Tech. 52, 1252 �2004�.
�13� D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopoulos, and E.

Yablonovitch, IEEE Trans. Microwave Theory Tech. 47, 1252
�1999�.

�14� S. Maslovski and S. Tretyakov, J. Appl. Phys. 94, 4241
�2003�.

�15� L. B. Felsen and N. Marcuvitz, Radiation and Scattering of
Waves �IEEE Press, New York, 1994�.

SIMOVSKI, VIITANEN, AND TRETYAKOV PHYSICAL REVIEW E 72, 066606 �2005�

066606-10


